3.160 \(\int \frac {a+d x^3}{2+3 x^4} \, dx\)

Optimal. Leaf size=114 \[ -\frac {a \log \left (3 x^2-6^{3/4} x+\sqrt {6}\right )}{8 \sqrt [4]{6}}+\frac {a \log \left (3 x^2+6^{3/4} x+\sqrt {6}\right )}{8 \sqrt [4]{6}}-\frac {a \tan ^{-1}\left (1-\sqrt [4]{6} x\right )}{4 \sqrt [4]{6}}+\frac {a \tan ^{-1}\left (\sqrt [4]{6} x+1\right )}{4 \sqrt [4]{6}}+\frac {1}{12} d \log \left (3 x^4+2\right ) \]

[Out]

1/24*a*arctan(-1+6^(1/4)*x)*6^(3/4)+1/24*a*arctan(1+6^(1/4)*x)*6^(3/4)+1/12*d*ln(3*x^4+2)-1/48*a*ln(-6^(3/4)*x
+3*x^2+6^(1/2))*6^(3/4)+1/48*a*ln(6^(3/4)*x+3*x^2+6^(1/2))*6^(3/4)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 114, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 8, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.471, Rules used = {1876, 211, 1165, 628, 1162, 617, 204, 260} \[ -\frac {a \log \left (3 x^2-6^{3/4} x+\sqrt {6}\right )}{8 \sqrt [4]{6}}+\frac {a \log \left (3 x^2+6^{3/4} x+\sqrt {6}\right )}{8 \sqrt [4]{6}}-\frac {a \tan ^{-1}\left (1-\sqrt [4]{6} x\right )}{4 \sqrt [4]{6}}+\frac {a \tan ^{-1}\left (\sqrt [4]{6} x+1\right )}{4 \sqrt [4]{6}}+\frac {1}{12} d \log \left (3 x^4+2\right ) \]

Antiderivative was successfully verified.

[In]

Int[(a + d*x^3)/(2 + 3*x^4),x]

[Out]

-(a*ArcTan[1 - 6^(1/4)*x])/(4*6^(1/4)) + (a*ArcTan[1 + 6^(1/4)*x])/(4*6^(1/4)) - (a*Log[Sqrt[6] - 6^(3/4)*x +
3*x^2])/(8*6^(1/4)) + (a*Log[Sqrt[6] + 6^(3/4)*x + 3*x^2])/(8*6^(1/4)) + (d*Log[2 + 3*x^4])/12

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1876

Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[(x^ii*(Coeff[Pq, x, ii] + Coeff[Pq, x, n/2 + ii
]*x^(n/2)))/(a + b*x^n), {ii, 0, n/2 - 1}]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ
[n/2, 0] && Expon[Pq, x] < n

Rubi steps

\begin {align*} \int \frac {a+d x^3}{2+3 x^4} \, dx &=\int \left (\frac {a}{2+3 x^4}+\frac {d x^3}{2+3 x^4}\right ) \, dx\\ &=a \int \frac {1}{2+3 x^4} \, dx+d \int \frac {x^3}{2+3 x^4} \, dx\\ &=\frac {1}{12} d \log \left (2+3 x^4\right )+\frac {a \int \frac {\sqrt {2}-\sqrt {3} x^2}{2+3 x^4} \, dx}{2 \sqrt {2}}+\frac {a \int \frac {\sqrt {2}+\sqrt {3} x^2}{2+3 x^4} \, dx}{2 \sqrt {2}}\\ &=\frac {1}{12} d \log \left (2+3 x^4\right )+\frac {a \int \frac {1}{\sqrt {\frac {2}{3}}-\frac {2^{3/4} x}{\sqrt [4]{3}}+x^2} \, dx}{4 \sqrt {6}}+\frac {a \int \frac {1}{\sqrt {\frac {2}{3}}+\frac {2^{3/4} x}{\sqrt [4]{3}}+x^2} \, dx}{4 \sqrt {6}}-\frac {a \int \frac {\frac {2^{3/4}}{\sqrt [4]{3}}+2 x}{-\sqrt {\frac {2}{3}}-\frac {2^{3/4} x}{\sqrt [4]{3}}-x^2} \, dx}{8 \sqrt [4]{6}}-\frac {a \int \frac {\frac {2^{3/4}}{\sqrt [4]{3}}-2 x}{-\sqrt {\frac {2}{3}}+\frac {2^{3/4} x}{\sqrt [4]{3}}-x^2} \, dx}{8 \sqrt [4]{6}}\\ &=-\frac {a \log \left (\sqrt {6}-6^{3/4} x+3 x^2\right )}{8 \sqrt [4]{6}}+\frac {a \log \left (\sqrt {6}+6^{3/4} x+3 x^2\right )}{8 \sqrt [4]{6}}+\frac {1}{12} d \log \left (2+3 x^4\right )+\frac {a \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt [4]{6} x\right )}{4 \sqrt [4]{6}}-\frac {a \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt [4]{6} x\right )}{4 \sqrt [4]{6}}\\ &=-\frac {a \tan ^{-1}\left (1-\sqrt [4]{6} x\right )}{4 \sqrt [4]{6}}+\frac {a \tan ^{-1}\left (1+\sqrt [4]{6} x\right )}{4 \sqrt [4]{6}}-\frac {a \log \left (\sqrt {6}-6^{3/4} x+3 x^2\right )}{8 \sqrt [4]{6}}+\frac {a \log \left (\sqrt {6}+6^{3/4} x+3 x^2\right )}{8 \sqrt [4]{6}}+\frac {1}{12} d \log \left (2+3 x^4\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 108, normalized size = 0.95 \[ \frac {1}{48} \left (-6^{3/4} a \log \left (\sqrt {6} x^2-2 \sqrt [4]{6} x+2\right )+6^{3/4} a \log \left (\sqrt {6} x^2+2 \sqrt [4]{6} x+2\right )-2\ 6^{3/4} a \tan ^{-1}\left (1-\sqrt [4]{6} x\right )+2\ 6^{3/4} a \tan ^{-1}\left (\sqrt [4]{6} x+1\right )+4 d \log \left (3 x^4+2\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(a + d*x^3)/(2 + 3*x^4),x]

[Out]

(-2*6^(3/4)*a*ArcTan[1 - 6^(1/4)*x] + 2*6^(3/4)*a*ArcTan[1 + 6^(1/4)*x] - 6^(3/4)*a*Log[2 - 2*6^(1/4)*x + Sqrt
[6]*x^2] + 6^(3/4)*a*Log[2 + 2*6^(1/4)*x + Sqrt[6]*x^2] + 4*d*Log[2 + 3*x^4])/48

________________________________________________________________________________________

fricas [B]  time = 0.85, size = 359, normalized size = 3.15 \[ -\frac {4 \cdot 6^{\frac {1}{4}} \sqrt {3} \sqrt {2} {\left (a^{4}\right )}^{\frac {1}{4}} a^{4} \arctan \left (-\frac {6^{\frac {3}{4}} \sqrt {3} \sqrt {2} {\left (a^{4}\right )}^{\frac {3}{4}} a^{4} x - 6^{\frac {3}{4}} \sqrt {3} \sqrt {2} \sqrt {\frac {1}{3}} {\left (a^{4}\right )}^{\frac {3}{4}} a^{4} \sqrt {\frac {3 \, a^{2} x^{2} + 6^{\frac {1}{4}} \sqrt {3} \sqrt {2} {\left (a^{4}\right )}^{\frac {1}{4}} a x + \sqrt {6} \sqrt {a^{4}}}{a^{2}}} + 6 \, a^{7}}{6 \, a^{7}}\right ) + 4 \cdot 6^{\frac {1}{4}} \sqrt {3} \sqrt {2} {\left (a^{4}\right )}^{\frac {1}{4}} a^{4} \arctan \left (-\frac {6^{\frac {3}{4}} \sqrt {3} \sqrt {2} {\left (a^{4}\right )}^{\frac {3}{4}} a^{4} x - 6^{\frac {3}{4}} \sqrt {3} \sqrt {2} \sqrt {\frac {1}{3}} {\left (a^{4}\right )}^{\frac {3}{4}} a^{4} \sqrt {\frac {3 \, a^{2} x^{2} - 6^{\frac {1}{4}} \sqrt {3} \sqrt {2} {\left (a^{4}\right )}^{\frac {1}{4}} a x + \sqrt {6} \sqrt {a^{4}}}{a^{2}}} - 6 \, a^{7}}{6 \, a^{7}}\right ) - {\left (6^{\frac {1}{4}} \sqrt {3} \sqrt {2} {\left (a^{4}\right )}^{\frac {1}{4}} a^{4} + 4 \, a^{4} d\right )} \log \left (3 \, a^{2} x^{2} + 6^{\frac {1}{4}} \sqrt {3} \sqrt {2} {\left (a^{4}\right )}^{\frac {1}{4}} a x + \sqrt {6} \sqrt {a^{4}}\right ) + {\left (6^{\frac {1}{4}} \sqrt {3} \sqrt {2} {\left (a^{4}\right )}^{\frac {1}{4}} a^{4} - 4 \, a^{4} d\right )} \log \left (3 \, a^{2} x^{2} - 6^{\frac {1}{4}} \sqrt {3} \sqrt {2} {\left (a^{4}\right )}^{\frac {1}{4}} a x + \sqrt {6} \sqrt {a^{4}}\right )}{48 \, a^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+a)/(3*x^4+2),x, algorithm="fricas")

[Out]

-1/48*(4*6^(1/4)*sqrt(3)*sqrt(2)*(a^4)^(1/4)*a^4*arctan(-1/6*(6^(3/4)*sqrt(3)*sqrt(2)*(a^4)^(3/4)*a^4*x - 6^(3
/4)*sqrt(3)*sqrt(2)*sqrt(1/3)*(a^4)^(3/4)*a^4*sqrt((3*a^2*x^2 + 6^(1/4)*sqrt(3)*sqrt(2)*(a^4)^(1/4)*a*x + sqrt
(6)*sqrt(a^4))/a^2) + 6*a^7)/a^7) + 4*6^(1/4)*sqrt(3)*sqrt(2)*(a^4)^(1/4)*a^4*arctan(-1/6*(6^(3/4)*sqrt(3)*sqr
t(2)*(a^4)^(3/4)*a^4*x - 6^(3/4)*sqrt(3)*sqrt(2)*sqrt(1/3)*(a^4)^(3/4)*a^4*sqrt((3*a^2*x^2 - 6^(1/4)*sqrt(3)*s
qrt(2)*(a^4)^(1/4)*a*x + sqrt(6)*sqrt(a^4))/a^2) - 6*a^7)/a^7) - (6^(1/4)*sqrt(3)*sqrt(2)*(a^4)^(1/4)*a^4 + 4*
a^4*d)*log(3*a^2*x^2 + 6^(1/4)*sqrt(3)*sqrt(2)*(a^4)^(1/4)*a*x + sqrt(6)*sqrt(a^4)) + (6^(1/4)*sqrt(3)*sqrt(2)
*(a^4)^(1/4)*a^4 - 4*a^4*d)*log(3*a^2*x^2 - 6^(1/4)*sqrt(3)*sqrt(2)*(a^4)^(1/4)*a*x + sqrt(6)*sqrt(a^4)))/a^4

________________________________________________________________________________________

giac [A]  time = 0.20, size = 109, normalized size = 0.96 \[ \frac {1}{24} \cdot 6^{\frac {3}{4}} a \arctan \left (\frac {3}{4} \, \sqrt {2} \left (\frac {2}{3}\right )^{\frac {3}{4}} {\left (2 \, x + \sqrt {2} \left (\frac {2}{3}\right )^{\frac {1}{4}}\right )}\right ) + \frac {1}{24} \cdot 6^{\frac {3}{4}} a \arctan \left (\frac {3}{4} \, \sqrt {2} \left (\frac {2}{3}\right )^{\frac {3}{4}} {\left (2 \, x - \sqrt {2} \left (\frac {2}{3}\right )^{\frac {1}{4}}\right )}\right ) + \frac {1}{48} \, {\left (6^{\frac {3}{4}} a + 4 \, d\right )} \log \left (x^{2} + \sqrt {2} \left (\frac {2}{3}\right )^{\frac {1}{4}} x + \sqrt {\frac {2}{3}}\right ) - \frac {1}{48} \, {\left (6^{\frac {3}{4}} a - 4 \, d\right )} \log \left (x^{2} - \sqrt {2} \left (\frac {2}{3}\right )^{\frac {1}{4}} x + \sqrt {\frac {2}{3}}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+a)/(3*x^4+2),x, algorithm="giac")

[Out]

1/24*6^(3/4)*a*arctan(3/4*sqrt(2)*(2/3)^(3/4)*(2*x + sqrt(2)*(2/3)^(1/4))) + 1/24*6^(3/4)*a*arctan(3/4*sqrt(2)
*(2/3)^(3/4)*(2*x - sqrt(2)*(2/3)^(1/4))) + 1/48*(6^(3/4)*a + 4*d)*log(x^2 + sqrt(2)*(2/3)^(1/4)*x + sqrt(2/3)
) - 1/48*(6^(3/4)*a - 4*d)*log(x^2 - sqrt(2)*(2/3)^(1/4)*x + sqrt(2/3))

________________________________________________________________________________________

maple [A]  time = 0.05, size = 125, normalized size = 1.10 \[ \frac {\sqrt {3}\, 6^{\frac {1}{4}} \sqrt {2}\, a \arctan \left (\frac {\sqrt {2}\, \sqrt {3}\, 6^{\frac {3}{4}} x}{6}-1\right )}{24}+\frac {\sqrt {3}\, 6^{\frac {1}{4}} \sqrt {2}\, a \arctan \left (\frac {\sqrt {2}\, \sqrt {3}\, 6^{\frac {3}{4}} x}{6}+1\right )}{24}+\frac {\sqrt {3}\, 6^{\frac {1}{4}} \sqrt {2}\, a \ln \left (\frac {x^{2}+\frac {\sqrt {3}\, 6^{\frac {1}{4}} \sqrt {2}\, x}{3}+\frac {\sqrt {6}}{3}}{x^{2}-\frac {\sqrt {3}\, 6^{\frac {1}{4}} \sqrt {2}\, x}{3}+\frac {\sqrt {6}}{3}}\right )}{48}+\frac {d \ln \left (3 x^{4}+2\right )}{12} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^3+a)/(3*x^4+2),x)

[Out]

1/24*3^(1/2)*6^(1/4)*2^(1/2)*a*arctan(1/6*2^(1/2)*3^(1/2)*6^(3/4)*x+1)+1/24*3^(1/2)*6^(1/4)*2^(1/2)*a*arctan(1
/6*2^(1/2)*3^(1/2)*6^(3/4)*x-1)+1/48*3^(1/2)*6^(1/4)*2^(1/2)*a*ln((x^2+1/3*3^(1/2)*6^(1/4)*2^(1/2)*x+1/3*6^(1/
2))/(x^2-1/3*3^(1/2)*6^(1/4)*2^(1/2)*x+1/3*6^(1/2)))+1/12*d*ln(3*x^4+2)

________________________________________________________________________________________

maxima [A]  time = 3.06, size = 149, normalized size = 1.31 \[ \frac {1}{24} \cdot 3^{\frac {3}{4}} 2^{\frac {3}{4}} a \arctan \left (\frac {1}{6} \cdot 3^{\frac {3}{4}} 2^{\frac {1}{4}} {\left (2 \, \sqrt {3} x + 3^{\frac {1}{4}} 2^{\frac {3}{4}}\right )}\right ) + \frac {1}{24} \cdot 3^{\frac {3}{4}} 2^{\frac {3}{4}} a \arctan \left (\frac {1}{6} \cdot 3^{\frac {3}{4}} 2^{\frac {1}{4}} {\left (2 \, \sqrt {3} x - 3^{\frac {1}{4}} 2^{\frac {3}{4}}\right )}\right ) + \frac {1}{144} \cdot 3^{\frac {3}{4}} 2^{\frac {3}{4}} {\left (2 \cdot 3^{\frac {1}{4}} 2^{\frac {1}{4}} d + 3 \, a\right )} \log \left (\sqrt {3} x^{2} + 3^{\frac {1}{4}} 2^{\frac {3}{4}} x + \sqrt {2}\right ) + \frac {1}{144} \cdot 3^{\frac {3}{4}} 2^{\frac {3}{4}} {\left (2 \cdot 3^{\frac {1}{4}} 2^{\frac {1}{4}} d - 3 \, a\right )} \log \left (\sqrt {3} x^{2} - 3^{\frac {1}{4}} 2^{\frac {3}{4}} x + \sqrt {2}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^3+a)/(3*x^4+2),x, algorithm="maxima")

[Out]

1/24*3^(3/4)*2^(3/4)*a*arctan(1/6*3^(3/4)*2^(1/4)*(2*sqrt(3)*x + 3^(1/4)*2^(3/4))) + 1/24*3^(3/4)*2^(3/4)*a*ar
ctan(1/6*3^(3/4)*2^(1/4)*(2*sqrt(3)*x - 3^(1/4)*2^(3/4))) + 1/144*3^(3/4)*2^(3/4)*(2*3^(1/4)*2^(1/4)*d + 3*a)*
log(sqrt(3)*x^2 + 3^(1/4)*2^(3/4)*x + sqrt(2)) + 1/144*3^(3/4)*2^(3/4)*(2*3^(1/4)*2^(1/4)*d - 3*a)*log(sqrt(3)
*x^2 - 3^(1/4)*2^(3/4)*x + sqrt(2))

________________________________________________________________________________________

mupad [B]  time = 0.28, size = 117, normalized size = 1.03 \[ \ln \left (x-\frac {{\left (-1\right )}^{1/4}\,2^{1/4}\,3^{3/4}}{3}\right )\,\left (\frac {d}{12}-\frac {6^{1/4}\,\sqrt {\frac {3}{4}{}\mathrm {i}}\,a}{12}\right )+\ln \left (x+\frac {{\left (-1\right )}^{1/4}\,2^{1/4}\,3^{3/4}}{3}\right )\,\left (\frac {d}{12}+\frac {6^{1/4}\,\sqrt {\frac {3}{4}{}\mathrm {i}}\,a}{12}\right )+\ln \left (x-\frac {{\left (-1\right )}^{3/4}\,2^{1/4}\,3^{3/4}}{3}\right )\,\left (\frac {d}{12}+\frac {6^{1/4}\,\sqrt {-\frac {3}{4}{}\mathrm {i}}\,a}{12}\right )+\ln \left (x+\frac {{\left (-1\right )}^{3/4}\,2^{1/4}\,3^{3/4}}{3}\right )\,\left (\frac {d}{12}-\frac {6^{1/4}\,\sqrt {-\frac {3}{4}{}\mathrm {i}}\,a}{12}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + d*x^3)/(3*x^4 + 2),x)

[Out]

log(x - ((-1)^(1/4)*2^(1/4)*3^(3/4))/3)*(d/12 - (6^(1/4)*(3i/4)^(1/2)*a)/12) + log(x + ((-1)^(1/4)*2^(1/4)*3^(
3/4))/3)*(d/12 + (6^(1/4)*(3i/4)^(1/2)*a)/12) + log(x - ((-1)^(3/4)*2^(1/4)*3^(3/4))/3)*(d/12 + (6^(1/4)*(-3i/
4)^(1/2)*a)/12) + log(x + ((-1)^(3/4)*2^(1/4)*3^(3/4))/3)*(d/12 - (6^(1/4)*(-3i/4)^(1/2)*a)/12)

________________________________________________________________________________________

sympy [A]  time = 0.42, size = 51, normalized size = 0.45 \[ \operatorname {RootSum} {\left (165888 t^{4} - 55296 t^{3} d + 6912 t^{2} d^{2} - 384 t d^{3} + 27 a^{4} + 8 d^{4}, \left (t \mapsto t \log {\left (x + \frac {24 t - 2 d}{3 a} \right )} \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**3+a)/(3*x**4+2),x)

[Out]

RootSum(165888*_t**4 - 55296*_t**3*d + 6912*_t**2*d**2 - 384*_t*d**3 + 27*a**4 + 8*d**4, Lambda(_t, _t*log(x +
 (24*_t - 2*d)/(3*a))))

________________________________________________________________________________________